Library Documentation

. Introduction

.1 Overview

.1.1 Introduction

.1.2 Inspiration

.1.3 Philosophy

.2 Installation

.2.1 Downloading & extracting
.2.2 Uploading to your server
.2.3 Running unit tests

2. Topics

2.1 Getting Started

2.2 Reading a csv file

2.3 Writing / appending a csv file
2.4 Using dialects

2.5 Auto-detecting csv format
2.6 Error Handling

3. Components

3.1 Csv_Reader
3.2 Csv_Writer

3.3 Csv_Dialect
3.4 Csv_AutoDetect
3.5 Csv_Exception

1. Introduction

1.1 Overview

PHP CSV Utilities is a fully object-oriented PHP5S library for working with CSV files. Although PHP has
native support for dealing with CSV files, they can be a bit painful to work with. The goal of this library
is to ease that pain as much as possible.

Because of the relatively large name of this library, I'll use its full name, PHP CSV Utilities, as well as
it's abbreviation, PCU, interchangeably throughout this documentation and beyond.

1.2 Inspiration

PCU was inspired by python’s native csv module and borrows heavily from it in both interface as well as
philosophy. Although I stayed true to its interface where I could, there are some areas that just didn't
translate well to PHP and were given a different interface in this library. There are also components in
this library that are unique and you will not find their counterpart in python’s csv module. Basically I
used python’s csv module as a starting point.

1.3 Philosophy

The philosophy of this library is modularity. Every class in this library is not only capable of being
extended, but encouraged. While designing PHP CSV Utilities, I have followed industry-standard OOP
design patterns and techniques to create a library that is easy to extend and customize to fit your
needs.

1.2 Installation

1.2.1 Downloading & extracting

You may download the library at the PHP CSV Utilities Google Code page. Here you will see (on the
right) a “featured downloads” section which will contain the newest release. If you need an older
release, click on the “downloads” tab above.

The library comes in two archive formats: a tarball (.tar.gz) or a zip file (.zip). Which format you choose
is up to you (if you don't know which you need, use the zip file).

To extract the archive(s) on Windows:

To extract the tarball, you'll need to get an archiving tool capable of gzip compression. Winzip or
WinRar are both capable of this.

To extract the zip file, double click the file and then click “extract all files”. Then follow the instructions
on the extractin wizard.

To extract the archive(s) on Linux (replace <filename> with the path to the archive):

To extract the tarball:
tar xvzf <filename>.tar.gz
To extract the zip:

tar xvzf <filename>.zip

1.2.2 Uploading to your server

After extracting the library files, you should now have a folder called “pcu”. Inside you will see the
following:

/pcu
/Csv
/docs
/tests

You only need to upload the “Csv” directory to your web server. It is recommended that you upload
them into a directory that is in your php include_path.

1.2.3 Running the unit tests

Before you will be able to run the unit tests, you'll need to download the SimpleTest PHP unit testing
library and place it somewhere on your include path (the easiest way would be to place the “simpletest”
directory inside of the library's “tests” directory). After this, make sure the tests/tmp directory is
writable.

To run the unit tests, upload both “test” and “Csv” directories. Go to “tests/index.php” in your web
browser, or if you have command-line access to your server, open it in your cli. Either method will
result in a report telling you (hopefully) that the tests all pass.

2. Topics

2.1 Getting Started

By default, both Csv_Reader and Csv_Writer will attempt to deduce the format of the CSV file
automatically. If you'd like to explicitly specify the format, skip ahead to section 2.4 “Using dialects” to
learn to configure your readers and writers properly. If you are just learning how to use the library and
need some sample data to work with, you can find some sample files in the “tests/data” folder.

For the topics below, consider this table when “products.csv” is referenced:

\name Hprice Hdescription Htaxable \
‘Widget H 10.99 HA wonderful wittle widget. H 1 ‘
\Whatsamahoozit H 1.99 H‘I’he best Whatsamahoozit this side of Wyoming. H 0 \
\Dandy Doodad H 19.99 H‘I’his is one dandy doodad. H 1 \
‘Thingamajigger H 100 H‘I’hingamajiggers are the best product known to man. H 1 \
\Jolly Junk H .99 H‘I’his is just some junk. H 1 \
E\Something H 40.49 HI like this. It is something. It isn't taxable. H 0 \

2.2 Reading a csv file

For this, you'll need to instantiate a new Csv_Reader object. Pass the path to your CSV file as the first
argument to the object.

Sreader = new Csv_Reader ('/path/to/data/products.csv');

Now, because Csv_Reader implements the Iterator SPL Interface, you can loop through it with a
foreach loop, just like an array. The following will print a list of product names:

Sreader = new Csv_Reader ('/path/to/data/products.csv');
foreach (Sreader as $row) {

print $row([l] . "
";
}

Other methods of looping through a file

http://www.simpletest.org/

The following will print the first 10 rows in the CSV file (including the header row):

Sreader = new Csv_Reader ('/path/to/data/products.csv');
$i = 0;
while ($row = S$Sreader->getRow() && $1 < 10) {

print S$row[l] . "
";

Si++;

Like I said before, Csv_Reader implements the SPL Iterable interface. This means the standard iterable
methods are available as well:

Sreader = new Csv_Reader ('/path/to/data/products.csv');
while ($row = S$reader->current()) {
print Srow[l] . "
";

Sreader->next (); // advances the internal pointer

Convert a CSV file to an array

Although this whole object-oriented interface stuff is cool, sometimes you just need to work with an
array.

Srows = S$reader->toArray();
Determine how many rows are in a CSV file

Both of the following methods will give you the total rows in the file:

echo count ($reader);

echo Sreader->count () ;

Specifying whether the file has a header row

By default, Csv_Reader will not attempt to detect whether or not your CSV file has a header row. It will
simply assume it doesn't and return numerically indexed rows as shown above. If you know your file
has a header row, you may specify this and Csv_Reader's methods will, from that point on, return
associative arrays, indexed by the first row:

Sreader = new Csv_Reader ('/path/to/products.csv');
Sreader->useFirstRowAsHeader () ;

Srow = Sreader->getRow () ;

echo $row['name']; // return arrays will now use header as keys

Note: when using this method, Csv_Reader will essentially ignore your header row from the time you
call useFirstRowAsHeader(). If you need to retrieve this row at any point after calling that method, use
getHeader().

Sreader = new Csv_Reader ('/path/to/products.csv');

Sreader->useFirstRowAsHeader () ;

Sheader = Sreader->getHeader () ;

If you aren't sure whether or not your file has a header row, simply call
Csv_Reader::detectHasHeader() to determine this.

Sreader = new Csv_Reader ('/path/to/products.csv');
if (Sreader->detectHasHeader ()) {

Sreader->useFirstRowAsHeader () ;

2.3 Writing / appending a csv file
Instantiate a new Csv_Writer object and pass it the path to your CSV file.

Swriter = new Csv_Writer ('/path/to/data/products.csv');

From here there are several methods of writing rows to the CSV file. If you need to write to the file line
by line, you can use the writeRow() method.

Swriter = new Csv_Writer('/path/to/data/products.csv');

Swriter->writeRow (array (10, 'Chicken Gizzards', 9.99, 'Some prime chicken gizzards',
1))

It is just as simple to write multiple rows to the file with writeRows().

Swriter = new Csv _Writer ('/path/to/data/products.csv');

Srows = array(
array (10, 'And another thing', 90, 'This is just another thing', 0),
array(ll, 'Bacon', 8.99, 'Delicious', 1),
array (12, 'Cheap Bacon', .99, 'Some cheap bacon', 1),

)7

Swriter->writeRows (Srows) ;
Appending a CSV file

Csv_Writer also accepts a file handle in its constructor which means you can open a file in append
mode, pass it to Csv_Writer and it will append rather than overwrite the file.

Sproducts_file = fopen('/path/to/data/products.csv', 'a');
Swriter = new Csv_Writer ($products file);

Swriter->writeRow (array (10, 'Chicken Gizzards', 9.99, 'Some prime chicken gizzards',
1))

Explicitly specifying a header row

If you'd like to specify the row that should be used as the header row in the CSV file, simply pass an
array of column names to setHeader() and this will guarantee that the first row in the file will be your
header row.

$writer->setHeader(array('id','name’,'price’,'description’,'taxable"));

2.4 Using dialects

To provide a common interface for specifying CSV file format to your readers and writers, PCU comes
with a class called Csv_Dialect. This class makes it very simple to specify the format you'd like to read
or write. The library comes with several dialects you can use right out of the box.

Reformat a CSV file

Just to show you how cool dialects are, and how easy they make things, Let’s assume that products.csv
is comma-delimited and all columns are quoted. I'm going to reformat the file to use tabs and quote
only if there are special characters in the column.

Sreader = new Csv_Reader ('products.csv', new Csv_Dialect Excel);
$dialect = new Csv_Dialect Excel();

$dialect->quoting = Csv_Dialect::QUOTE MINIMAL;
$dialect->delimiter = "\t";

Swriter = new Csv_Writer ('new-products.csv', S$dialect);

Swriter->writeRows (Sreader) ;

2.5 Auto-detecting csv format

Auto-detecting the format of a CSV file in PCU is incredibly easy. Csv_Reader attempts to detect the
format of a csv file by default.

Sreader = new Csv_Reader ('products.csv');

Srowl = S$Sreader->getRow(); // will most likely already know the format

If you do not want Csv_Reader to detect the file's format, pass a Csv_Dialect object as the second
parameter to its constructor.

$dialect = new Csv_Reader ('/path/to/products.csv');

$dialect->delimiter = “\t”; // use a tab as the delimiter
$dialect->lineterminator = “\n”; // use a standard newline as the line terminator
Sdialect->quoting = Csv_Dialect::QUOTE ALL; // quote all columns
$dialect->escapechar = “\””; // escape quotes with a quote character

$dialect->quotechar = “\””; // use double quotes to quote

Alternately, you may pass an array with all of these values to Csv_Dialect's constructor instead of
setting the properties manually:

$dialect = new Csv_Dialect (array(
'delimiter' => “\t”,
'lineterminator' => “\n”,
'quoting' => Csv_Dialect::QUOTE ALL,
))

2.6 Error Handling

PCU throws exceptions when it encounters any type of problem. Such problems include files not be
readable or writable, or perhaps not existing as well as the inability to determine a file's format. To see
where exceptions are thrown in PCU, see the component documentation below.

For example, when attempting to read a CSV file, you can wrap your code in a try/catch block:

try {
Sreader = new Csv_Reader ('/path/to/products.csv');
} catch (Csv_Exception FileNotFound Se) {
echo “Sorry, the file you requested could not be found.”;

}

To forgo the use of exceptions, use the following:

try {

// put CSV code in here and exceptions will essentially be ignored
} catch (Csv_Exception Se) {
}

3. Components

3.1 Csv_Reader

This component provides a very simple interface for reading csv files of just about any format. The
constructor takes either a file name or a file resource as its first argument. Once instantiated, there are
several methods for reading the file. You can use a while loop, a for loop, even a foreach loop. Or, if
you prefer, you can convert the whole file to a php array.

Csv_Reader is completely configurable. As its second parameter, it accepts what is called a dialect (a
Csv_Dialect object) that defines the format in which the file is to be written. If a Csv_Dialect object is
not passed to the Csv_Reader object, it will attempt to deduce the format of the file automatically.

3.2 Csv_Writer

This component provides a very simple interface for writing csv files in just about any format. You may
write row by row, or you can pass it a two-dimensional array and it will write the whole thing to a csv
file.

Csv_Writer is completely configurable. As its second parameter, it accepts what is called a dialect (a
Csv_Dialect object) that defines the format in which the file is to be written.

3.4 Csv_Dialect

One of the most complicated issues with CSV is that there really is no standard format for it. Although
CSV stands for “comma-separated values”, there is no guarantee a csv file will actually be separated by
commas. CSV files vary wildly from file to file, application to application. Some use commas, some use

tabs, some use different line endings, or different quoting styles, the list goes on. PCU solves this
problem by allowing the user to provide a Csv_Dialect class to many of its components which tells them
which format the CSV file is or should be.

3.4 Csv_ AutoDetect

This component inspects a sample of CSV data and attempts to deduce its format. It returns a
Csv_Dialect object which you can then pass to your readers and writers. It can also attempt to detect if
there is a header row.

3.5 Csv_Exception

PCU will throw exceptions any time there is an exceptional situation. You should learn to work with
exceptions if you haven’t done so before.

	Library Documentation
	1. Introduction
	1.1 Overview
	1.2 Inspiration
	1.3 Philosophy

	1.2 Installation
	1.2.1 Downloading & extracting
	1.2.2 Uploading to your server
	1.2.3 Running the unit tests

	2. Topics
	2.1 Getting Started
	2.2 Reading a csv file
	2.3 Writing / appending a csv file
	2.4 Using dialects
	2.5 Auto-detecting csv format
	2.6 Error Handling

	3. Components
	3.1 Csv_Reader
	3.2 Csv_Writer
	3.4 Csv_Dialect
	3.4 Csv_ AutoDetect
	3.5 Csv_Exception

